
Abstract—In reversible data hiding (RDH), the original cover
can be losslessly restored after the embedded information is ex-
tracted. Kalker and Willems established a rate–distortion model
for RDH, in which they proved out the rate–distortion bound and
proposed a recursive code construction. In our previous paper, we
improved the recursive construction to approach the rate–distor-
tion bound. In this paper, we generalize the method in our previous
paper using a decompression algorithm as the coding scheme for
embedding data and prove that the generalized codes can reach
the rate–distortion bound as long as the compression algorithm
reaches entropy. By the proposed binary codes, we improve three
RDH schemes that use binary feature sequence as covers, i.e., an
RS scheme for spatial images, one scheme for JPEG images, and a
pattern substitution scheme for binary images. The experimental
results show that the novel codes can significantly reduce the em-
bedding distortion. Furthermore, by modifying the histogram shift
(HS) manner, we also apply this coding method to one scheme that
uses HS, showing that the proposed codes can be also exploited to
improve integer-operation-based schemes.

Index Terms—Difference expansion (DE), histogram shift (HS),
recursive code construction, reversible data hiding (RDH), water-
marking.

I. INTRODUCTION

D ATA HIDING is a technique for embedding information
into covers such as image, audio, and video files, which

can be used for media notation, copyright protection, integrity
authentication, covert communication, etc. Most data hiding
methods embed messages into the cover media to generate the
marked media by only modifying the least significant part of
the cover and, thus, ensure perceptual transparency. The em-
bedding process will usually introduce permanent distortion to
the cover, that is, the original cover can never be reconstructed
from the marked cover. However, in some applications, such
as medical imagery, military imagery, and law forensics, no
degradation of the original cover is allowed. In these cases, we
need a special kind of data hiding method, which is referred
to as reversible data hiding (RDH) or lossless data hiding, by
which the original cover can be losslessly restored after the
embedded message is extracted.

Many RDH methods have been proposed since it was intro-
duced. Fridrich and Goljan [1] presented a universal framework
for RDH, in which the embedding process is divided into
three stages (See Fig. 1). The first stage losslessly extracts
compressible features (or portions) from the original cover.
The second stage compresses the features with a lossless
compression method and, thus, saves space for the payloads
(messages). The third stage embeds messages into the feature
sequence and generates the marked cover. One direct reversible
embedding method is to compress the feature sequence and
append messages after it to form a modified feature sequence,
by which replace the original features to generate the marked
cover. Therefore, after extracting the message, the receiver
can restore the original cover by decompressing the features.
Fridrich and Goljan [1] suggested features obtained by ex-
ploiting characteristics of certain image formats, e.g., texture
complexity for spatial images and middle-frequency discrete
cosine transform (DCT) coefficients for JPEG images. Celik
et al. [2] extended Fridrich and Goljan’s scheme by predicting
multiple least significant bit (LSB) planes. The same idea
proposed in [1] can be also used for reversible data embedding
into binary images [3], [4] or videos [5], [6].
Larger embedding capacity can be achieved by constructing

a longer feature sequence that can be perfectly compressed. One
of such constructions is difference expansion (DE), which was
first proposed by Tian [7], in which the features are the differ-
ences between two neighboring pixels. The features are com-
pressed by expansion, i.e., the differences are multiplied by 2,
and thus, the LSBs of the differences can be used for embed-
ding messages. Alattar [8] generalized Tian’s method by ap-
plying DE to a vector of pixels. Kim et al. [9] improved the DE
method by reducing the size of the location map used to com-
municate position information of expandable difference values.
The methods proposed in [10] and [11] can achieve better per-
formance by applying DE to the prediction errors.
Another well-known strategy for RDH is histogram shift

(HS), in which the histogram of the image is used as the com-
pressible features because the distribution of the pixel values

of an image is usually uneven. To compress the histogram,
Ni et al. [12] proposed to select a peak bin and a zero bin
and shift the bins between them toward the zero bin by one
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Fig. 1. Diagram for the framework of RDH at the sender side.

Fig. 2. Side information used at the receiver side in three frameworks.

step. Therefore, the peak bin’s neighboring bin, which is now
emptied out, and the peak bin can be used to represent “1”
and “0,” respectively. It is easy to see that a steeper histogram
implies larger capacity, and, usually, the histogram of residuals
is quite steep. Thus, most state-of-the-art methods apply HS to
residuals of the image [13], [14].
Both DE- and HS-based schemes use integer features and

special methods to compress the features. As for DE, the fea-
tures (differences) are compressed by expansion operation, and
as for HS, the features (histogram) are compressed by shifting
operation. There is a common character in both these schemes,
that is, the distortion to the original cover is mainly introduced
by the special compressing manners. By contrast, Fridrich
and Goljan’s schemes [1] use a binary feature sequence and
a generic compression algorithm, e.g., the arithmetic coder,
and no distortion must be introduced by the compression.
According to such differences, we divide RDH into two types
as follows.
• Type I. The features can be formulated as a binary se-
quence and can be compressed by using a generic com-
pression algorithm. The methods in [1]–[6] belong to Type
I.

• Type II. The features are nonbinary and compressed
in some specific manners. Both DE-based [7]–[11] and
HS-based methods [12]–[14] belong to Type II.

For Type-I RDH, the problem is formulated as how to re-
versibly embed data into a compressible binary sequence with
good performance. The performance is measured by embedding
rate versus distortion, which is a special rate–distortion coding
problem. A formal model for this problem has been established
by Kalker and Willems [15]. In [15], the authors obtained the
rate–distortion function, i.e., the upper bound of the embed-
ding rate under a given distortion constraint, and, by dividing
the cover into disjoint blocks, they proposed a recursive code
construction, which consists of a nonreversible data embedding
code and a conditional compression code. In fact, Kalker and
Willems noted that the receiver can reconstruct the cover with
the help of the marked cover, and thus, the sender can compress
the cover under the condition of the marked cover. That is why
the recursive construction is efficient.
In our previous paper [17], we improved the recursive con-

struction by using not only conditional compression but also
conditional embedding, which enables us to design an efficient

embedding algorithm and a perfect compressing method to
approach the rate–distortion bound. In fact, we noted that the
receiver could extract messages from the marked cover with
the help of the reconstructed cover because of reversibility. In
Fig. 2, the side information exploited at the receiver side in
the proposed framework is compared with those used in two
previous frameworks.
However, there are still limitations in three aspects in [17].

First, we construct embedding codes by improving the decom-
pression algorithm of run-length coding, by which the recursive
code construction is close to but cannot reach the rate–distortion
bound. Second, the codes in [17] are restricted to some discrete
embedding rates and cannot approach the maximum embedding
rate at the least admissible distortion. Third, the codes are re-
stricted to improve Type-I RDH for spatial images, and how to
improve Type-II RDH by binary codes is still a problem.
In this paper, we generalize the code construction in [17] by

using a general decompression algorithm as the embedding code
and extend the applications to Type-II RDH. Compared with our
preliminary paper [17], the new contributions of this paper are
as follows.
• We prove that the recursive code construction can reach
the rate–distortion bound when the decompression/com-
pression algorithms used in the code are optimal, which
establishes equivalence between source coding and RDH
for binary covers.

• With the decompression of the adaptive arithmetic coder
(AAC) as the embedding code, the proposed codes realize
continuous embedding rates and reach the maximum em-
bedding rate at the least admissible distortion.

• A method is presented to improve integer-operation-based
RDH (Type II) by the proposed binary codes, which are
also applied to Type-I RDH for JPEG and binary images.

The rest of this paper is organized as follows. The coding
model, rate–distortion function, and recursive code construc-
tion are briefly introduced in Section II. The proposed codes
with proof of optimality are elaborated in Section III. Some im-
plementation issues and performance comparison are discussed
in Section IV. In Section V, we improve Type-I schemes,
including schemes for spatial, JPEG, and, binary images.
Section VI addresses how to improve Type-II schemes with
the proposed binary codes. This paper is concluded with a
discussion in Section VII.
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II. CODING MODEL AND RECURSIVE CONSTRUCTION

A. Coding Model

Throughout this paper, we denote matrices and vectors by
boldface fonts and use the same notation for the random variable
and its realization, for simplicity. We denote entropy by
and conditional entropy by . Particularly, the binary
entropy function is denoted by for , and
the ternary entropy function is denoted by for

and .
To do RDH, a compressible feature sequence should be first

extracted from the original cover. For Type-I schemes, the fea-
tures can be usually represented by a binary sequence. There-
fore, we directly take the binary feature sequence as the cover
to discuss the codingmethod and follow the notation established
in [15].
Assume that there is a memoryless source producing binary

compressible cover sequence such that
with the probability and

. The assumption of being compressible
implies that the ratios of “0’s” and “1’s” are biased. Without
loss of generality, we assume that . We use Hamming
distance to measure the embedding distortion on the cover .
Because the message is usually compressed and encrypted
before being embedded, we assume that the message is a binary
random sequence. If we can reversibly embed an -bit message

into to get the marked cover
with modifications on average, we define the

embedding rate as and the distortion as .
For any given distortion constraint, we desire the embedding
rate as high as possible.
A direct construction for RDH was proposed by Fridrich and

Goljan [1] as follows. First, compress the cover into a string
Comp with a lossless compression algorithm Comp . The
length of Comp is approximately equal to . There-
fore, we can averagely append bits of message
after Comp to obtain Comp . The recipient

can extract the message from and reconstruct by de-
compressing Comp . As the bits of Comp are uncorrelated
with those of , and the message is random, the expectation
of distortion between and is 0.5. The embedding rate is equal
to , which, in fact, is the maximum achievable em-
bedding rate. If we only need to embed a shorter message with
length equal to for some , we can exe-
cute the aforementioned method on a fraction of the symbols
in . In this case, the embedding rate and
the distortion . Therefore, for the distortion constraint
, this simple method can achieve a rate–distortion curve, i.e.,

(1)

Virtually, the simple method above is not optimal.
The maximum achievable embedding rate within the dis-

tortion constraint is called the capacity under the distortion
. The following theorem proved by Kalker and Willems [15]

gives the expression of capacity.

Theorem 1: The reversible embedding capacity for a
memoryless binary source with is, for ,
given by [15]

(2)

Note that the above bound can be increased for nonmemory-
less sequences, but we assume the binary cover is memoryless
throughout this paper, and this assumption, in fact, is suitable
for most schemes.

B. Recursive Construction

To approach the rate–distortion curve, Kalker and Willems
[15] proposed a recursive embedding method, which consists of
a nonreversible embedding code and a conditional compression
algorithm. First, select a nonreversible embedding code with
distortion and embedding rate . Assume the binary cover
sequence is sufficiently long. The se-
quence is segmented into disjoint blocks of length , such that

. Without loss of generality, we assume
that is a sufficiently large integer. With the embedding
code , bits of message can be embedded into the first
host block , resulting in the first marked block . The recip-
ient can reconstruct under the condition of known- after
she receives . Therefore, the amount of information needed
to reconstruct is equal to , which means we can
compress into a sequence of length on average.
This compressed sequence is embedded into the second block
, averagely leaving room for bits of auxil-

iary message. Similarly, the information for reconstructing
is embedded into . This process is recursively continued until

. For the last block , the simple method described
in Section II-A is used to complete a full RDH method. When
and are large enough, the distortion of this method is

equal to the distortion of code , and the embedding rate is equal
to .
This recursive construction performs better than the simple

method because of two key points: 1) The data is embedded
by an efficient nonreversible embedding code, and 2) the cover
block is compressed under the condition of the marked block.
However, the above recursive construction cannot approach the
upper bound (2).

III. IMPROVED RECURSIVE CONSTRUCTION

A. Motivations and Overall Framework

In this section, we will improve the recursive construction
to approach the rate–distortion bound for any given distortion
constraint. To do that, we first observe the rate–distortion func-
tion (2), which shows that the maximum capacity is equal to

, and it can be achieved when distortion
. In Fig. 3, we draw the rate–distortion curves for

and , which show that the capacity increases with distortion
for but keeps equal to for

. Therefore, we only need to consider how
to construct codes for . On the other hand, in
[15, Corollary 1], Kalker and Willems proved that the optimal
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Fig. 3. Maximum capacity for and .

embedding manner for is that only the most
probable symbol, i.e., “0,” is allowed to be modified.
Inspired by the above observation, we improve the recursive

construction as follows. We only embed messages into “0’s” of
the cover block to obtain themarked block

, and thus, only “0’s” in will be modified
for the th block such that . Therefore, for
the position such that , the corresponding must
be also equal to 0. This property can be used to compress
under the condition of known- . In fact, we can first delete the
symbol in at position such that and obtain a
subsequence of , which is denoted by , and then compress
by a lossless compression algorithm Comp . This method

will greatly improve the compression rate because most sym-
bols in have been compressed by deletion. The compressed
, which is denoted by Comp , cascaded with an auxiliary

message, is embedded into the next block to get the next
marked block . To extract the message and reconstruct the
cover, the extraction process must be performed in a backward
manner. To extract message from , we first extract message
from and obtain by decompression. Combining and
, we can reconstruct and find the positions of “0’s” in .

According to the positions of “0’s” in , we can extract mes-
sage from .
The detailed process and an example for embedding and ex-

traction will be described in Section III-B.

B. Improved Recursive Construction

We first need an embedding algorithm for embedding data
only into zero symbols, which, in fact, is a special case of the
coding model in Section II with taking . By (2), the
capacity for is equal to , which implies that the
optimal method for embedding data into only “0’s” is equivalent
to decompression.
For example, assume is a lossless compression algorithm

that has compression rate for a memoryless binary source
with , and then, we can use the decompression algorithm
of to embed data into zero symbols. In fact, into an -bit zero
cover, we can embed bits of random messages, on av-
erage, by decompressing the message into an -bit sequence by
setting as the parameter of decompression. To extract
the message, we only need to compress the -bit sequence back
to the bits of messages. Obviously, the embedding rate
is equal to , and the distortion is equal to because, on av-
erage, “0’s” are changed to “1’s” in the embedding process.

Therefore, if the compression algorithm is optimal, i.e., the
compression rate , we just achieve the embed-
ding capacity.
To improve the recursive construction in [15] and [16], we

use the decompression algorithm of as the embedding code
and design a corresponding conditional compression algorithm
for the cover based on .
Assume that the binary cover sequence

is generated from a memoryless source satisfying
and . To embed messages into reversibly

with distortion constraint , we first divide into dis-
joint blocks of length , such that . In
each block, we only embed messages into zero symbols via the
decompression algorithm of . Note that, when the distortion
on the sequence is , the distortion on zero symbols is
because only “0’s” will be modified. Therefore, we use
as the parameter of the decompression algorithm of and, on
average, decompress the first

(3)

bits of messages into a -bit sequence, which is denoted
by . The sequence will include
“1’s,” on average. By replacing the “0’s” in

with , we just obtain the first marked block
, which introduces changes, on

average.
Therefore, at the position , such that and
, the corresponding must be also equal to “0” because
no “1” in has been flipped to “0.” We use this property to
compress under the condition of known- by deleting all
symbols in at position ’s, such that , resulting in
a subsequence of . Denote this subsequence by , and thus,

. Note that the proportion
of “0’s” in is equal to the ratio of nonmodified “0’s” in ,
that is, , and thus, the ratio of “1’s” in is equal
to . Therefore, the average
length of is equal to . In other words, under
the condition of known- , the block is compressed to
with compression rate , and we can reconstruct
by replacing “1’s” in by the symbols of .
Furthermore, we compress with the lossless compression

algorithm . Denote the proportion of “0’s” and “1’s” in
by and , respectively, which can be easily computed as
follows:

(4)

Therefore, can be compressed with the rate . Denote
the compressed information by Comp . In summary, when
is known, the amount of information needed to reconstruct
, i.e., the length of Comp , is, on average, equal to

(5)

By using the decompression algorithm of , we embed
Comp into the “0’s” of the next block , leaving room
for embedding bits of
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Fig. 4. Example on the improved recursive construction.

auxiliary messages, on average, and resulting in the second
marked block . The information for reconstructing , which
is denoted by Comp , is embedded into the third block .
This process is recursively continued until the one but the last
block . For the last block , we directly compress
the block and make room for bits, on average,
into which we embed Comp for reconstructing the
second last block . In addition, we also embed the
overhead information, such as parameters , , and , into
the last block.
To extract the message and reconstruct the cover, the extrac-

tion process must be performed in a backward manner. To ex-
tract messages from the th block , for ,
we must first extract messages from and obtain by de-
compression. Combining and , we can reconstruct and
find the positions of “0’s” in , according to which we extract a
subsequence from and compress this subsequence by with

as the parameter to obtain the message hidden in .
When and are large enough, the distortion of the

method above is just , and by (3) and (5), the corresponding
embedding rate can be calculated by

(6)

Now, we use an example with only two blocks to illustrate
the embedding and extraction process of the method described
above.
Example 1: As shown in Fig. 4, the first cover block con-

sists of nine “0’s” and one “1,” and thus, . Set the
distortion constraint , and therefore, the distortion on
zero symbols is equal to . With 2/9 as the pa-
rameter of the decompression algorithm, assume that the first 7
bits of the message are decompressed into a 9-bit sequence .
By replacing “0’s” in with , we generate the first marked
block . Denote the index set of “1’s” in by Ind , and thus,
Ind , according to which we extract bits from
and get . The sequence is com-
pressed to Comp and then embedded into the second block.

To reconstruct the cover block and extract messages from the
marked block , we first count the number of “1’s” in , that
is, equal to 3. Second, we extract messages from the second

marked block and decompress the extracted messages succes-
sively until we get a 3-bit decompressed sequence, which is just
. Thus, we can reconstruct by replacing the “1’s” in

by . After that, we find the index set of “0’s” in , such that
Ind , according to which we extract
bits from and get the sequence . Finally, we can extract
the seven message bits by compressing .

C. Optimality

The next theorem shows that the proposed code construction
is optimal as long as the compression algorithm is optimal.
Theorem 2: The proposed codes reach the embedding ca-

pacity [see eq. (2)] when the compression rate of is equal
to entropy, i.e., for .

Proof: As mentioned in Section III-A, the maximum ca-
pacity appears at , and thus,
we only need to consider the distortion range .When

, (2) can be rewritten as

(7)

On the other hand, when the compression rate of is equal
to entropy, the embedding rate [see eq. (6)] of the proposed
codes can be rewritten as

(8)
By the grouping property of entropy [18], on one hand, we

have

(9)

and, on the other hand, we have

(10)
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Subtracting (8) from (7), we have

(11)

and thus, we obtain the theorem. Herein, the third equality fol-
lows from (9) and (10).

IV. IMPLEMENTATION ISSUES AND PERFORMANCE
COMPARISON

A. Overhead in the Last Block

In this paper, we propose the AAC [19] as the compression
algorithm and the decompression algorithm of AAC as the em-
bedding code, which can approximately reach the entropy.
In practice, we should set a proper length for the last block.

Denote the estimated length of the last block by . After
compression, the left room in the last block is about

bits, in which we will embed not only the informa-
tion for reconstructing the second last block but also some over-
head information. On one hand, to reconstruct the second last
block, we need, at most, bits because the number of “1’s”
in is not more than . On the other hand, the over-
head consists of some parameters necessary to the recipient, the
length of which is denoted by . Thus, the estimated length
of the last block is enough, if

(12)

which implies that the lower bound of the length of the last block
is

(13)

Therefore, for a cover sequence of length , the estimated
number of -bit blocks, i.e., , is equal to

(14)

Thus, we get the estimated length of the last block as follows:

(15)

Note that the estimated length may be not enough in
practice when the ratio of “0’s” in the last block is far from ,
that is, the overall ratio of “0’s.” Therefore, we should modify

Fig. 5. Structure of the last marked block.

the value of . First, take the last bits from the -bit
cover and calculate the ratio of “0’s” in these bits, which is de-
noted by . Second, by using , we modify the lower bound
of the length of the last block as

(16)

and modify the number of -bit blocks as

(17)

Thus, the length of the last block is given by

(18)

To extract messages exactly, the recipient should know the
length of previous blocks and the parameters , , and
needed by the compression/decompression algorithm. Block

length can be fixed in advance by the sender and the recip-
ient. Thus, the overhead consists of , , and . In practice,
it is enough to take three decimal for each parameter, and thus,
30 bits are enough for the overhead, i.e., . We embed
the overhead into the end of the last block. The structure of the
last block is shown in Fig. 5.
When extracting messages from the -bit marked sequence,

the recipient first reads the parameters , , and from the
last 30 bits of the sequence and then computes by (4). Further-
more, the recipient obtains by (13) (14) (15) (16) (17) (18)
and determines the start point of the last block and then reads
bits successively and decompresses them with as the param-
eter. When the length of the decompressed sequence is equal to

, stop the process of decompression because the last cover
block has been obtained. Continue reading bits from the
last marked block and decompress them with as the param-
eter until the length of the decompressed sequence is equal to
the number of “1’s” in the second last marked block .
This decompressed sequence is just , which will be used
to reconstruct the second last cover block . Next, with

as the parameter, the extraction process, as described in
Section III-B, will be continued until the first marked block.

B. Determining the Parameter

In practice, when we need to embed an -bit message into
an -bit cover, we should determine the minimal distortion
as the parameter for realizing the embedding rate .
We first calculate the length of the last block by (13)
(14) (15) (16) (17) (18) and get the modified embedding rate

. Theorem 2 implies that the rate–distor-
tion bound (2) can be used to estimate the embedding rate of the
proposed codes when the last block is neglected. Therefore, we
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Fig. 6. Comparison of embedding rate versus distortion between the proposed codes and codes in [15]–[17]. (a) . (b) .

use the reverse function of (2) to estimate the needed parameter
, that is

(19)

which will be embedded into the tail of the cover, as shown in
Fig. 5. Note that the obtained by (19) is not distortion on the
original -bit cover but on its first bits.

C. Performance Comparison

In this paper, we propose the decompression algorithm of the
AAC [19] as the embedding algorithm, whereas in our previous
paper [17], we used the improved reverse zero-run length (RZL)
coding [6] as the embedding algorithm. In fact, the improved
RZL can be viewed as a modified version of the decompression
algorithm of run-length coding. When we compare these two
methods, the AAC is used as the compression algorithm in both
cases.
We also compare these two methods with the codes proposed

in [15] and [16]. In the original recursive construction [15],
Kalker and Willems used Hamming matrix embedding [20]
as the nonreversible data embedding code, by which they can
embed bits of message into cover bits with, at most,
one modification. The Hamming codes modify “0’s” and “1’s”
with equal probability. Maas et al. [16] improved the original
recursive construction by adjusting Hamming code to change
more “0’s” than “1’s” for the case .
The simulation results of these coding methods are compared

for and . The simulation results are obtained by
embedding random messages into a -bit cover. In the ex-
periments, we set the length of cover blocks for the
proposed method and the RZL-based method in [17]. As shown
in Fig. 6, the RZL-based method is only somewhat better than
the proposed method at small embedding rates for ,
but it generates codes with only sparse embedding rates and
cannot reach the maximum capacity for . The proposed
method generates codes with continuous embedding rates and
reaches the maximum capacity at distortion . Although

the codes proposed in [16] are close to the maximum capacity
for , they need larger distortion than .

V. APPLICATIONS IN TYPE-I SCHEMES

The coding method above can be directly applied to data
hiding schemes that belong to Type I, such as those in [1]–[6].
Next, we use the proposed codes to improve RDH schemes for
spatial, JPEG, and binary images, respectively.

A. Improving the RS Scheme for Spatial Images

The RS method [1] is proposed for spatial images by con-
structing compressible features based on texture complexity.
Assume the covers are 8-bit gray scale images. The image is first
divided into small groups, e.g., pixels per group. A permuta-
tion is used to flip the gray values, the amplitude of which is
controlled by a positive integer . For instance, when ,
the flipping function is as follows:

(20)

For a pixel group , the permutation on is de-
fined as . A distinguishing func-
tion is used to detect the changing direction of the variation
of the group. Thus

(21)

By using the functions and , the pixel group can be defined
as regular , singular , or unusable , such that

(22)

For typical pictures, adding some noise will lead to an in-
crease in the variation; hence, we expect a bias between the
number of regular groups and the number of singular groups. By
assigning a “0” to a regular group and a “1” to a singular group,
we can generate a binary cover sequence satisfying .
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Fig. 7. Test images sized 512 512. (a) Lenna.pgm. (b) Baboom.pgm. (c) Boat.pgm. (d) Barbara.pgm. (e) Goldrill.pgm. (f) Peppers.pgm.

TABLE I
PATTERNS EXTRACTED FROM TEST IMAGES

Flipping between “0” and “1” can be realized by applying to
the corresponding pixel group.
Usually, larger amplitude implies larger capacity, but it also

implies larger embedding distortion. In our experiments, we set
from 1 to 4, and the group size . For each value of ,

we embed messages with the original RS method and the pro-
posed codes into six 8-bit gray scale images sized 512 512
[21] (see Fig. 7). We observe that the ratio of “0’s” in the RS
sequence varied from 0.54 to 0.87. In our coding method, we
embed messages with the maximum embedding rate, i.e., taking

as the parameter. As shown in Fig. 8, the pro-
posed codes increase the peak signal-to-noise ratios (PSNRs)
for various kinds of test images. Herein, the embedding rate is
defined as bits carried by per pixel (bpp).

B. Improving the Scheme for JPEG Images

In this subsection, we apply the codes to the reversible em-
bedding scheme for JPEG images proposed by Firdrich and
Goljan [1]. In the method in [1], quantized DCT coefficients that
are equal to 0 and 1 at middle or high frequency are selected to
form a compressible binary sequence. In our experiments, the
test images are generated by compressing test images in Fig. 7
into a JPEG format with quality factor 80. We construct the bi-
nary cover by extract 0–1 coefficients from 11 positions, such
as (3, 3), (2, 4), (4, 2), (1, 5), (5, 1), (3, 4), (4, 3), (2, 5), (5, 2),
(1, 6), and (6, 1), from every 8 8 block of quantized DCT
coefficients. Random messages are embedded into the binary
cover by using Fridrich and Goljan’s method [1] and the pro-
posed codes with several kinds of embedding rates. As shown
in Fig. 9, the proposed codes can improve the method in [1] by
increasing PSNRs from 1 to 4 dB.

C. Improving PS Scheme for Binary Images

As another example of applications, we use the proposed
codes to improve the pattern substitution (PS) method for RDH
in binary images [4]. Denote an binary image by , such
that . When using as
the cover image, the PS method first computes the image differ-
encing by EXCLUSIVE-OR operation between neighbor pixels
of , such that

if and
if and
otherwise.

(23)

TABLE II
NUMBER OF MODIFICATIONS FOR DIFFERENT LENGTHS OF MESSAGES
EMBEDDED BY THE PS METHOD AND THE IMPROVED PS METHOD

In the image differencing , the symbol “1’s” indicate the
edges of the original image , around which modifications are
usually insensible. Scan the image from left to right and from
top to bottom, and divide it into disjoint blocks containing four
pixels. Search all these 4-bit patterns to find a pair of patterns,
such that there is a large gap between their occurrence frequen-
cies. Denote the pattern with large numbers by PM and the pat-
tern with small numbers by PF. By assigning “0” to PM and
“1” to PF, we just get a compressible binary cover. To keep vi-
sual quality, neither PM nor PF can be all-zero vectors, and the
number of modifications for PS should be as small as possible.
In the PS method, a location map is used to record the positions
of PFs, and then, the message bits combining with the location
map are embedded into the PM–PF (0–1) sequence. Modifica-
tions are realized by substitution between patterns PM and PF.
Denote the number of PFs by , and the location map will
cost bits of capacity. Therefore, the number of PFs
must be very small.
We improve the PS method by applying the proposed codes

to embed messages into the PM–PF sequence with five kinds
of message lengths, which does not need a location map. Be-
cause the cover sequence is short, we take the length of the cover
blocks in the experiments. For each 256 256 test
images in Fig. 10, the selected pattern pairs with frequencies are
listed in Table I. Note that, in one PS, we need to flip one pixel
in “Butterfly” and two pixels in other images according to the
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rate under a given distortion constraint may be achieved by
using joint encoding of feature compression and message em-
bedding and, thus, proposed the recursive code construction. In
this paper, we improve the recursive construction by using not
only the joint encoding above but also a joint decoding of fea-
ture decompression and message extraction. The proposed code
construction significantly outperforms previous codes [15], [16]
and is proved to be optimal when the compression algorithm
reaches entropy.
The current codes are designed for binary covers and, thus,

can significantly improve Type-I schemes based on binary fea-
ture sequences. By slightly modifying the HS manner, we found
that the proposed binary codes can be also partly applied to
Type-II schemes and improve their performance, but the im-
provement is not so significant as that for Type-I schemes. Note
that we only use two simple methods to modify HS, and there-
fore, one interesting problem is whether there exists other more
effective modifying methods or not. Another problem is how to
design recursive codes for gray scale covers. We will pay our
attention to these problems in further works.
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VII. CONCLUSION

Most state-of-the-art RDH schemes use a strategy with sep-
arate processes of feature compression and message embed-
ding. Kalker and Willems [15] noted that a higher embedding
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